Exchanger Performance Behavior Through Irreversibility Analysis for 1-2 TEMA G Heat Exchangers

Author:

Shah Ramesh K.1,Skiepko Teodor2

Affiliation:

1. Subros Limited, Noida, UP, India 201304

2. Department of Mechanical Engineering, Bialystok Technical University, Wiejska 45C, 15-351 Bialystok, Poland

Abstract

Abstract The objective of this paper is to illustrate, discuss, and explain the interrelationship between the temperature difference irreversibility and heat exchanger effectiveness to clarify the performance trends of exchangers with some complex flow arrangements. This is because there is no physical explanation provided for the following results presented by Shah and Skiepko (ASME J. Heat Transfer, 126, pp. 994–1002, 2004): the heat exchanger effectiveness can be maximum, having an intermediate value or minimum at the maximum irreversibility operating point depending upon the flow arrangement of two fluids; similarly, the heat exchanger effectiveness can be minimum or maximum at the minimum irreversibility operating point. The analysis of such complex performance behavior is presented in this paper with an example of overall parallelflow and counterflow 1-2 TEMA G exchangers. This is accomplished by the decomposition of complex flow arrangements into simple subexchangers, and then the overall irreversibility trends for the exchangers are explained by irreversibilities produced due to temperature difference and fluid mixing in component subexchangers. It is shown for 1-2 TEMA G exchangers that the temperature difference irreversibility for a pure parallelflow subexchanger passes through a maximum at finite value of NTU1, and then approaches 0 when NTU1→∞. On the contrary, the irreversibility for a pure counterflow subexchanger attains a minimum value at finite NTU1 and then increases with NTU1 and approaches maximum at NTU1→∞ for 1–2 TEMA G exchangers. This is because the temperatures at the inlet of the subexchangers are variable and dependent on the exit temperatures from the preceding subexchangers. Detailed exchanger effectivenesses and temperature ratios are presented as a function of NTU1 for the explanation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3