Damage-Induced Modeling of Elastic-Viscoelastic Randomly Oriented Particulate Composites

Author:

Kim Yong-Rak1,Allen David H.2,Seidel Gary D.3

Affiliation:

1. Department of Civil Engineering, W351 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0531

2. Department of Engineering Mechanics, 114 Othmer Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0642

3. Department of Aerospace Engineering, 616D HRBB, Texas A&M University, College Station, TX 77843-3141

Abstract

This paper presents a model for predicting the damage-induced mechanical response of particle-reinforced composites. The modeling includes the effects of matrix viscoelasticity and fracture, both within the matrix and along the boundaries between matrix and rigid particles. Because of these inhomogeneities, the analysis is performed using the finite element method. Interface fracture is predicted by using a nonlinear viscoelastic cohesive zone model. Rate-dependent viscoelastic behavior of the matrix material and cohesive zone is incorporated by utilizing a numerical time-incrementalized algorithm. The proposed modeling approach can be successfully employed for numerous types of solid media that exhibit matrix viscoelasticity and complex damage evolution characteristics within the matrix as well as along the matrix-particle boundaries. Computational results are given for various asphalt concrete mixtures. Simulation results demonstrate that each model parameter and design variable significantly influences the mechanical behavior of the mixture.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference31 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3