Kinematic Shakedown Analysis of Anisotropic Heterogeneous Materials: A Homogenization Approach

Author:

Li H. X.1

Affiliation:

1. Department of Civil Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

Abstract

A nonlinear mathematical programming approach together with the finite element method and homogenization technique is developed to implement kinematic shakedown analysis for a microstructure under cyclic/repeated loading. The macroscopic shakedown limit of a heterogeneous material with anisotropic constituents is directly calculated. First, by means of the homogenization theory, the classical kinematic theorem of shakedown analysis is generalized to incorporate the microstructure representative volume element (RVE) chosen from a periodic heterogeneous or composite material. Then, a general yield function is directly introduced into shakedown analysis and a purely kinematic formulation is obtained for determination of the plastic dissipation power. Based on the mathematical programming technique, kinematic shakedown analysis of an anisotropic microstructure is finally formulated as a nonlinear programming problem subject to only a few equality constraints, which is solved by a generalized direct iterative algorithm. Both anisotropy and pressure dependence of material yielding behavior are considered in the general form of kinematic shakedown analysis. The purely kinematic approach based on the kinematic shakedown analysis has the advantage of less computational effort on field variables and more convenience for displacement-based finite element implementation. The developed method provides a direct approach for determining the reduced macroscopic strength domain of anisotropic heterogeneous or composite materials due to cyclic or repeated loading.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference79 articles.

1. Theorie Statisch Unbestimmter Tragwerke aus Idealplastischem Baustoff. Sitzungsbericht der Akademie der Wissenschaften (Wien) Abt;Melan;IIA

2. General Theorems for Elastic-Plastic Solids;Koiter

3. Shakedown Theory in Perfect Elastoplasticity With Associated and Nonassociated Flow-Laws: A Finite Element Linear Programming Approach;Maier;Meccanica

4. A Shakedown Matrix Theory Allowing for Workhardening and Second Order Geometric Effects;Maier

5. Upper Bounds on Deformations of Elastic-Workhardening Structures in the Presence of Dynamic and Second-Order Geometric Effects;Maier;J. Struct. Mech.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3