Effect of Counter- and Co-Swirl on Low-Frequency Combustion Instabilities of Jet A-1 Spray Flames

Author:

Ahn Byeonguk1,Kim Kyu Tae2

Affiliation:

1. Department of Energy and Process Engineering, Norwegian University of Science and Technology , Kolbjørn Hejes v 1B, Trondheim 7491, Norway

2. Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea

Abstract

Abstract The present article experimentally investigates the influence of pilot swirling directions on low-frequency combustion instabilities of pilot diffusion flames in a laboratory-scale combustor with jet A-1 fuel and air at atmospheric pressure. Airblast atomization nozzles with either counter-rotating (CTR) or corotating (COR) pilot swirl flows were examined using nonlinear time-series analyses and high-speed flame imaging measurements under idle and subidle operating conditions. We show that while the amplitude and frequency of limit cycle oscillations are observed to be similar for both cases, detailed examinations of measured experimental data reveal marked differences in stabilization mechanisms and pressure-heat release coupling processes. The spray flame dynamics subjected to counter-rotating swirl flows are governed by large-amplitude pressure oscillations, even under the influence of destructive pressure-heat release rate interference. The mechanism of destructive interference is closely related to the interactions between a spiral diffusion flame and a periodically detached reaction zone. Nonpremixed liquid-fueled flames involving corotating swirl, on the other hand, feature a more compact and intense reaction zone.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3