Investigation of the Linear Stability Problem of Electrified Jets, Inviscid Analysis

Author:

Özgen Serkan1,Uzol Oguz2

Affiliation:

1. Professor Department of Aerospace Engineering, Middle East Technical University, 06800, Ankara, Turkey e-mail:

2. Assistant Professor Department of Aerospace Engineering, Middle East Technical University, 06800, Ankara, Turkey e-mail:

Abstract

The instability characteristics of a liquid jet discharging from a nozzle into a stagnant gas are investigated using the linear stability theory. Starting with the equations of motion for incompressible, inviscid, axisymmetric flows in cylindrical coordinates, a dispersion relation is obtained, where the amplification factor of the disturbance is related to its wave number. The parameters of the problem are the laminar velocity profile shape parameter, surface tension, fluid densities, and electrical charge of the liquid jet. The dispersion relation is numerically solved as a function of the wave number. The growth of instabilities occurs in two modes, the Rayleigh and atomization modes. For rWe<1 (where We represents the Weber number and r represents the gas-to-liquid density ratio) corresponds to a Rayleigh or long wave instability, where atomization does not occur. On the contrary, for rWe>>1 the waves at the liquid-gas interface are shorter and when they reach a threshold amplitude the jet breaks down or atomizes. The surface tension stabilizes the flow in the atomization regime, while the density stratification and electric charges destabilize it. Additionally, a fully developed flow is more stable compared to an underdeveloped one. For the Rayleigh regime, both the surface tension and electric charges destabilize the flow.

Publisher

ASME International

Subject

Mechanical Engineering

Reference14 articles.

1. Mechanism of Atomization of a Liquid Jet;Reitz;Phys. Fluids

2. Instability of a Liquid Jet of Parabolic Velocity Profile;Ibrahim;Chem. Eng. J.

3. Liquid Jet Instability and Atomization in a Coaxial Gas Stream;Lasheras;Annu. Rev. Fluid Mech.

4. Stability of an Electrified Liquid Jet;Schneider;J. Appl. Phys.

5. Flow Instability of a Liquid Dielectric Cylinder in a Transverse Electrostatic Field;Eliseev;Izv. Vyssh. Uchebn. Zaved. Fiz.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3