Determination of Effective Drag Forces and Torques for Jam Release During Drilling and Workover Operations in Directional Wells

Author:

Ding Yanan1,Wang Haiwen2,Yang Daoyong1

Affiliation:

1. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina S4S 0A2, SK, Canada

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Abstract Excessive frictions in directional wells lead to various downhole problems such as pipe stuck that requires frequent workover operations, during which it is very challenging to accurately determine the effective drag (axial) forces and torques for releasing a jam at a stuck position due to the complex downhole situations. In this study, mathematical models have been formulated, validated, and applied to accurately determine such forces and torques in directional wells by taking the frictions caused by string-stiffness into account. The stiffness-based contact (normal) force is correlated with the deflection of a string segment by treating the bending segment as a simple beam that has both continuous and point contacts with the wellbore wall. Subsequently, the conventional soft-string model proposed by Johancsik et al. in 1984 is modified through coupling such a contact-force term into the original equations. Both the original soft-string model and the modified model are employed to perform the force and torque calculations for two field wells, based on which the effect of string-stiffness and the associated sensitivities are analyzed. Comparing the modified model with the conventional model, it has been found from their field applications that effective drag forces and torques for releasing a jam at a stuck point can be determined with an averaged relative deviation of 23.35% and 37.59%, respectively, indicating a considerable effect of string-stiffness that cannot be neglected for an accurate and efficient operation of jam release.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3