Effect of Fin Orientation on Melting Process in Horizontal Double Pipe Thermal Energy Storage Systems

Author:

Boulaktout Nesrine1,Mezaache El Hacene1,Teggar Mohamed2,Arıcı Müslüm3,Ismail Kamal A. R.4,Yıldız Çağatay3

Affiliation:

1. Laboratory LRPCSI, University of Skikda, Skikda 21000, Algeria

2. Laboratory of Mechanics, University of Amar TelijiBP 37G, Laghouat 03000, Algeria

3. Department of Mechanical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli 41001, Turkey

4. Department of Energy, University of Campinas, Rua Mendeleyev, 200, CidadeUniversitária “ZeferinoVaz”, Campinas 13083-860, São Paulo, Brazil

Abstract

Abstract Immersion of fins in latent heat thermal energy storage (LHTES) systems has been used as an influential approach to remedy the poor thermal conductivity of phase-change materials (PCMs). This paper numerically investigates heat transfer and phase-change improvement by means of longitudinal fins in a double pipe thermal energy storage unit. The main aim of this study is to investigate the effect of fin orientation on the performance of the thermal storage unit. Six configurations of different fin numbers (2, 4, and 8 fins) and orientations (π/2, π/4, and π/8) are tested. For simulations, a two-dimensional mathematical model incorporating the enthalpy-porosity method and finite volume techniques are established and solved by ansys-fluent. The numerical predictions are successfully validated by comparison with experimental and numerical data from the literature. Heat transfer characteristics and melting process are analyzed through streamlines, isotherms, mean temperature, heat flux (HF), and heat transfer coefficient (HTC) as well as transient melting front position and liquid fractions. Results show that orientation of fins has a significant impact on the charging time for two cases (2 and 4 fins) whereas no significant reduction in charging time was obtained for the case of 8 fins. In case of utilizing 2 fins, a fin orientation of 0 deg (vertical fins) shortens the charging time by up to 2.5 folds compared with the horizontal fins (90 deg). These results could help designing efficient latent thermal energy storage units.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3