The Trade-Off Between N2, NO, and N2O Under Fluidized Bed Combustor Conditions

Author:

Wartha C.1,Winter F.1,Hofbauer H.1

Affiliation:

1. Institute of Chemical Engineering, Fuel Technology and Environmental Technology, Vienna University of Technology, Getreidemarkt 9/159, A-1060 Vienna, Austria

Abstract

NO and N2O are harmful pollutants. Under fluidized bed combustor conditions, the nitrogen of the solid fuel is partly converted to these species. The trade-off between N2, NO, and N2O depends on the fuel and fuel characteristics, the complex homogeneous and heterogeneous formation and destruction paths, temperature and residence times, and so forth. Because of these complex interrelations, it is necessary to study these processes separately and to analyze their relative importance. To obtain a better understanding of the formation and destruction paths of NO and N2O, comprehensive studies have been performed in a laboratory-scale fluidized bed reactor optimized to obtain formation rates. The influence of the temperature and radicals on the NO and N2O formation from HCN and NH3 and destruction reactions were studied. The results show that N2O is formed only from HCN. Oxidation of NH3 forms NO and N2, HCN forms NO, N2O, and N2. Typically, 30 to 70 percent of NH3 are converted to N2, depending on bed temperature. In the case of HCN, only 5 to 25 percent are converted to N2. At temperatures below 800°C, NO reacts with CH4 oxidation products to NO2. Tests with HCN show that HCN conversion starts already at 700°C in the fluidized bed, N2O is formed in significant amounts only in the presence of CH4. The results of the NO and N2O destruction tests show that the thermal mechanism is of minor importance. At 900°C, N2O destruction with H radicals can be seen. N2O formation shows a maximum at 850°C. The gas reaction studies were used to understand the NH3, HCN, NO, and N2O single-particle formation characteristics of coke, bituminous coal, peat, and spruce wood under fluidized bed combustor conditions. [S0195-0738(00)00702-0]

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3