Structural Integrity Assessment of a Unit Cell in a Laboratory-Scale Printed Circuit Heat Exchanger for Molten Salt Reactors With Supercritical CO2 Power Cycle

Author:

Che Shuai1,Zhang Sheng1,Burak Adam1,Sun Xiaodong1

Affiliation:

1. University of Michigan, Ann Arbor, Michigan, United States

Abstract

Abstract The Printed Circuit Heat Exchanger (PCHE) is considered promising as an intermediate heat exchanger for Molten Salt Reactors (MSRs) due to its highly compact construction, high heat transfer effectiveness, and capability of withstanding high pressures. In this study, thermal-mechanical simulations were performed using a two-channel unit-cell model with the attempt to investigate the structural integrity of a laboratory-scale PCHE that was designed for molten salt-to-supercritical carbon dioxide heat transfer, with the temperature field obtained from Computational Fluid Dynamics (CFD) simulations. It is shown that the fillets on the semi-circular channel walls are stress concentration regions and that the stress intensity decreases quickly as the distance from the fillets increases. A quick drop in the maximum stress intensity is observed with the increase of the fillet radius. There is no significant increase in the stress intensity for locations around the zigzag sharp corners. With a lower bulk temperature and a higher stress intensity, the region close to the outlet of the PCHE hot channels is more vulnerable to potential failures than the inlet region of the hot channels. In addition, the choice of channel models has a weak impact on the maximum stress intensity around the cold channel fillets.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3