Exact Solution of the Startup Electroosmotic Flow of Generalized Maxwell Fluids in Triangular Microducts

Author:

Akyildiz F. Talay1,Siginer Dennis A.2

Affiliation:

1. Department of Mathematics and Statistics Faculty of Science, Imam Mohammad ibn Saud Islamic University, Riyadh, Saudi Arabia

2. LFASME Centro de Investigación en Creatividad y Educación Superior, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile

Abstract

Abstract The unsteady electroosmotic flow of generalized Maxwell fluids in triangular microducts is investigated. The governing equation is formulated with Caputo–Fabrizio time-fractional derivatives whose orders are distributed in the interval [0, 1). The linear momentum and the Poisson–Boltzmann equations are solved analytically in tandem in the triangular region with the help of the Helmholtz eigenvalue problem and Laplace transforms. The analytical solution developed is exact. The solution technique used is new, leads to exact solutions, is completely different from those available in the literature, and applies to other similar problems. The new expression for the velocity field displays experimentally observed ‘velocity overshoot’ as opposed to existing analytical studies none of which can predict the overshoot phenomenon. We show that when Caputo–Fabrizio time-fractional derivatives approach unity the exact solution for the classical upper convected Maxwell fluid is obtained. The presence of elasticity in the constitutive structure alters the Newtonian velocity profiles drastically. The influence of pertinent parameters on the flow field is explored.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Intermediate Processes and Critical Phenomena: Theory, Method and Progress of Fractional Operators and Their Applications to Modern Mechanics;Sci. China, Ser. G: Phys. Astron.,2006

2. Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media;Adv. Math. Phys.,2013

3. Advanced Topics in Fractional Dynamics;Adv. Math. Phys.,2013

4. A New Definition of Fractional Derivative Without Singular Kernel;Progr. Fract. Differ. Appl.,2016

5. Dynamic Analysis of Generalized Viscoelastic Fluids;J. Eng. Mech.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3