Enhanced Performance of Solar Diffusion Driven Desalination

Author:

Alnaimat Fadi1,Klausner James F.2

Affiliation:

1. e-mail:

2. Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611

Abstract

This study concerns an improvement in the solar diffusion driven desalination process under dynamic operating conditions for decentralized water production. The utilization of a heat exchanger for the solar diffusion driven desalination (DDD) process to recuperate the latent heat of condensation has been examined. It is found that the recuperated latent heat is best used for preheating the air inlet to the evaporator. Improvements in the system performance are achieved by increasing fresh water production by 30% for the solar DDD with a 0.75 effectiveness in the integrated heat exchanger. A theoretical model is implemented for analyzing the integrated desalination system, and a numerical assessment of the system performance for different operating conditions is presented. It is found that the installation of a heat exchanger for heat recovery in the air stream prior to entering the direct contact condenser increases the water production rate and reduces the specific energy consumption. It is concluded that the delayed operating mode for the solar DDD with an integrated heat exchanger is the best operating mode.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3