A Kriging Surrogate Model for Computing Gas Mixture Equations of State

Author:

Ouellet Frederick1,Park Chanyoung2,Rollin Bertrand3,Haftka Raphael T.2,Balachandar S.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 e-mail:

2. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

3. Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114

Abstract

Accurate simulation of the complex flow following the detonation of an explosive material is a challenging problem. In these flows, the detonation products of the explosive must be treated as a real gas while the surrounding air is treated as an ideal gas. As the detonation process unfolds and the blast wave moves into the surrounding ambient air, the products of detonation expand outward and interact with the air creating a mixture region. In this region, both of the state equations for air and the products must be satisfied. One of the most accurate, yet computationally expensive, methods to handle this problem is an algorithm that iterates between the equations of state until both pressure and temperature reach an equilibrium inside of a computational cell. Since this mixture region moves and grows over time, this algorithm must be performed millions, or even billions, of times in a typical detonation simulation. As such, these calculations can account for a large percentage of the overall solution time. This work aims to use a kriging surrogate model to replace this process. The iterative method solves a nonlinear system of equations created from the gas mixture density, internal energy, and composition using a Broyden iterative solver to obtain an output pressure and temperature. Kriging is used to produce curve fits which interpolate selected pressures and temperatures from this solver from appropriate ranges of the mixture input quantities. Using a finite volume hydrocode, the performance of the model with respect to the iterative solver is demonstrated in the simulation of a pentaerythritol tetranitrate (PETN) charge detonation. The model's computational speed and accuracy are quantified as a function of the choice of sampling points in order to try optimize the combination as well as to show the benefits of this novel approach.

Funder

National Nuclear Security Administration

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

1. A Novel Multi-Fidelity Surrogate for Handling Multi-Equation of State Gas Mixtures;AIP Conf. Proc.,2018

2. The Dynamics of Detonation in Explosive Systems;Annu. Rev. Fluid Mech.,2007

3. To the Theory of Detonation Propagation in Gas Systems;J. Exp. Theor. Phys.,1940

4. Particle Jet Formation During Explosive Dispersal of Solid Particles;Phys. Fluids,2012

5. Explosive Dispersal of Solid Particles;Shock Waves,2001

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3