Design of an Origami Bendy Straw for Robotic Multistable Structures

Author:

Bernardes Evandro1,Viollet Stéphane1

Affiliation:

1. CNRS, ISM, Aix-Marseille Université, Marseille Cedex 09, France

Abstract

Abstract This article presents a soft cylindrical multistable origami structure based on “bendy straws,” consisting of multiple conical frusta mimicking the structure of a flexible drinking straw. These frusta are connected in such a way that the whole structure is axially multistable, having a stable compressed state in which its smallest frustum is collapsed. The bendy straw structure can also be modified so that the smallest frustum collapses only partially, keeping the structure in a bent state. We studied the geometry of a similar structure consisting of polygonal frusta instead of conical ones and used this geometry to design a nonrigidly foldable origami pattern folding into a similar origami bendy straw structure. Most of the origami structures presented so far have been modeled from rigidly foldable origami patterns: These origami structures do not rely on local deformations of the sheet and cannot use it to their advantage, whereas the nonrigid origami structure presented here features multistability. We have established that this origami structure is not only axially multistable, but that it can also be kept in a bent state, thanks to the use of pop-through defects (PTDs). The origami bendy straws studied here were made from paper (with a density of 90 g/m2) bilaminated with a 42.5 μm thick plastic film. A digital dynamometer was used to study the forces required to compress and expand a single origami bendy straw, create and reverse a PTD, and bend an origami bendy straw using PTDs.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3