Quenching of a Heated Rod: Physical Phenomena, Heat Transfer, and Effect of Nanofluids

Author:

Dasgupta Arnab1,Chinchole A. S.1,Kulkarni P. P.1,Chandraker D. K.1,Nayak A. K.1

Affiliation:

1. Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India e-mail:

Abstract

The physical phenomena of rewetting and quenching are of prime importance in nuclear reactor safety in the event of a loss of coolant accident (LOCA). Generally, top spray or bottom flooding concepts are used in reactors. Numerical simulation of these processes entails the use of the concept of a rewetting velocity. However, heat transfer just before and after the rewetting front is often assumed in an ad hoc fashion. The present work aims to evaluate the surface heat flux during quenching as a function of surface temperature. The experiments presented herein are primarily applicable to the bottom flooding scenario with high flooding rate. In the experiments, a rod heated above Leidenfrost point is immersed in a pool of water. The surface temperature was recorded using a surface-mounted thermocouple. The surface heat flux was then determined numerically and hence can be related to a particular value of surface temperature. This type of data is useful for numerical simulations of quenching phenomena. In addition to this, high-speed photography was undertaken to visualize the phenomena taking place during the rewetting and quenching. Both subcooled and saturated water pools have been used and compared in the experiments. Surface finish was seen to influence rewetting process by a mechanism which here is termed as “transition boiling enhanced film boiling.” The effect of using nanofluids was also studied. No marked change is observed in the overall quenching time with nanofluids, however, the initial cooling is apparently faster.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference16 articles.

1. General Film Boiling Heat Transfer Prediction Methods for Advanced Water Cooled Reactors;IAEA,2001

2. Transition Boiling Heat Transfer;Adv. Heat Transfer,1987

3. Measurement of Boiling Curves During Rewetting of a Hot Circular Duct;Int. J. Heat Mass Transfer,1979

4. Calculation of Boiling Curves During Rewetting of a Hot Vertical Narrow Channel,2003

5. On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles;Int. J. Multiphase Flow,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3