Computational Fluid Dynamics Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge

Author:

Rutledge James L.1,Polanka Marc D.1

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 e-mail:

Abstract

While it is well understood that certain nondimensional parameters, such as freestream Reynolds number and turbulence intensity, must be matched for proper design of film cooling experiments; uncertainty continues on the ideal method to scale film cooling flow rate. This debate typically surrounds the influence of the coolant to freestream density ratio (DR) and whether mass flux ratio or momentum flux ratio properly accounts for the density effects. Unfortunately, density is not the only fluid property to differ between typical wind tunnel experiments and actual turbine conditions. Temperature differences account for the majority of the property differences; however, attempts to match DR through the use of alternative gases can exacerbate these property differences. A computational study was conducted to determine the influence of other fluid properties besides density, namely, specific heat, thermal conductivity, and dynamic viscosity. Computational fluid dynamics (CFD) simulations were performed by altering traditional film cooling nondimensional parameters as well as others such as the Reynolds number ratio, Prandtl number ratio, and heat capacity ratio (HCR) to evaluate their effects on adiabatic effectiveness and heat transfer coefficient. A cylindrical leading edge with a flat afterbody was used to simulate a turbine blade leading edge region. A single coolant hole was located 21.5 deg from the leading edge, angled 20 deg to the surface and 90 deg from the streamwise direction. Results indicated that thermal properties can play a significant role in understanding and matching results in cooling performance. Density effects certainly dominate; however, variations in conductivity and heat capacity can result in 10% or higher changes in the resulting heat flux to the surface when scaling ambient rig configurations to engine representative conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3