Prediction of State of Charge for Lead-Acid Battery Based on LSTM-Attention and LightGBM

Author:

Shen Yindong1,Ge Yaru22

Affiliation:

1. Huazhong University of Science and Technology School of Artificial Intelligence and Automation, The MOE Engineering Research Center of Autonomous Intelligent Unmanned Systems, , Wuhan 430074 , China

2. Huazhong University of Science and Technology School of Artificial Intelligence and Automation, The MOE Key Laboratory of Image Processing and Intelligent Control, , Wuhan 4300074 , China

Abstract

Abstract Accurately estimating the state of charge (SOC) of batteries is crucial for the objective of extending battery life and enhancing power supply reliability. Currently, machine learning methods are commonly used to predict the SOC of batteries, however, their accuracy in capturing the sequential nature of battery charging and discharging is insufficient. To address the problem of the SOC prediction, a deep learning model that employs long short-term memory (LSTM) with Attention mechanism is proposed. The LSTM model is designed to connect the current SOC with historical time data and to extract multidimensional features from groups of batteries. Additionally, introducing the Attention mechanism allows for the model to prioritize key information while disregarding insignificant data. This work utilizes two different approaches to the multi-cell case and the single-cell case for several reasons. Considering that the failure of a single cell can affect the entire group of batteries, the SOC prediction models for individual batteries need not take a long training time. Thus, the LightGBM model is developed to predict the SOC of a single battery whose training speed surpasses that of the deep learning model and has superior prediction accuracy and greater speed when employed with small-scale data, error within 3%. Conversely, the LSTM-Attention model yields higher prediction accuracy when processing large-scale datasets, error within 5%. Two models are proposed: one for predicting the SOC of groups of batteries and another for a single battery.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3