Synthetic Fault Mode Generation for Resilience Analysis and Failure Mechanism Discovery

Author:

Hulse Daniel1,Irshad Lukman2

Affiliation:

1. NASA Ames Research Center Intelligent Systems Division, , Moffett Field, CA 94043

2. NASA Ames Research Center Intelligent Systems Division (KBR, Inc.), , Moffett Field, CA 94043

Abstract

Abstract Traditional risk-based design processes seek to mitigate operational hazards by manually identifying possible faults and devising corresponding mitigation strategies—a tedious process which critically relies on the designer’s limited knowledge. In contrast, resilience-based design seeks to embody generic hazard-mitigating properties in the system to mitigate unknown hazards, often by modelling the system’s response to potential randomly generated hazardous events. This work creates a framework to adapt these scenario generation approaches to the traditional risk-based design process to synthetically generate fault modes by representing them as a unique combination of internal component fault states, which can then be injected and simulated in a model of system failure dynamics. Based on these simulations, the designer may then better understand the underlying failure mechanisms and mitigate them by design. The performance of this approach is evaluated in a model of an autonomous rover, where cluster analysis shows that elaborating the faulty state-space in the drive system uncovers a wider range of possible hazardous trajectories and failure consequences within each trajectory than would be uncovered from manual mode identification. However, this increase in hazard information gained from exhaustive mode sampling comes at a high computational expense, highlighting the need for advanced, efficient methods to search and sample the faulty state-space.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3