Numerical Analysis of Thermal, Fluid, and Electrical Performance of a Photovoltaic Thermal Collector at New Micro-Channels Geometry

Author:

Hoseinzadeh Siamak1,Garcia Davide Astiaso1

Affiliation:

1. Department of Planning, Design, Technology of Architecture, Sapienza University of Rome, Rome 00196, Italy

Abstract

Abstract In this article, different paths (direct, spiral, and curved) for water flow in a photovoltaic/thermal (PV/T) system are studied, and they are compared together. The intensity of radiation to the cell surface is taken 800 W/m2, and the fluid flow is considered to be laminar in the micro-channels. The PV cell absorbing radiation is of an aluminum type. The numerical solution of the three geometries is carried out using the finite volume method using ansys-fluent software. The pressure decomposition, momentum and energy discretization, and the solution of the pressure–velocity coupling are performed based on the standard method, the second-order upwind method, and the semi-implicit method for pressure-linked equations (SIMPLE) method, respectively. The convergence factor is considered to be respected and for continuity and energy equations. The results indicate that the cell surface temperature and the outlet fluid temperature decrease by increasing the Reynolds (Re) number. Moreover, electricity efficiency increases with the increased Reynolds number. The curved path has the highest electrical efficiency in comparison to other two paths. The decrease in fluid pressure of the curved path in Re = 600 is 4% and 1.3% higher than the direct and spiral paths, respectively.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3