Nondestructive Photoelastic and Machine Learning Characterization of Surface Cracks and Prediction of Weibull Parameters for Photovoltaic Silicon Wafers

Author:

Rowe Logan P.1,Kaczkowski Alexander J.1,Lin Tung-Wei1,Horn Gavin P.1,Johnson Harley T.1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

Abstract A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified through thickness infrared photoelastic images using a support vector machine-learning algorithm. Characteristic wafer strength is shown to vary with the angle of applied uniaxial tensile load, showing greater strength when loaded perpendicular to the wire speed direction than when loaded along the wire speed direction. Observed variations in characteristic strength and Weibull shape modulus with applied tensile loading direction stem from the distribution of crack orientations and the bulk stress field acting on the microcracks. Using this method, it is possible to improve manufacturing processes for silicon wafers by rapidly, accurately, and nondestructively characterizing large batches in an automated way.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. Photovoltaics Report;Fraunhofer Institute for Solar energy,2016

2. Crack Detection in Single-Crystalline Silicon Wafers Using Impact Testing;Hilmersson;Appl. Acoust.,2008

3. Progress in U.S. Photovoltaics Looking Back 30 Years and Looking Ahead 20;Surek,2003

4. Study of the Edge and Surface Cracks Influence in the Mechanical Strength of Silicon Wafers;Barredo,2009

5. Advanced Manufacturing Concepts for Crystalline Silicon Solar Cells;Nijs;IEEE Trans. Electron Devices,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3