An Effective Combined Finite Element-Upwind Finite Volume Method for a Transient Multiphysics Two-Phase Transport Model of a Proton Exchange Membrane Fuel Cell

Author:

Sun Pengtao1,Zhou Su2,Hu Qiya3

Affiliation:

1. Department of Mathematical Sciences, University of Nevada, Las Vegas 4505 Maryland Parkway, Las Vegas, NV 89154 e-mail:

2. College of Automotive Studies/New Energy Automotive Engineering Center, Tongji University, 4800 Caoan Road, Shanghai 201804, China e-mail:

3. Institute of Computational Mathematics and Scientific Engineering Computing, Chinese Academy of Sciences, Beijing 100080, China e-mail:

Abstract

In this paper, an effective combined finite element-upwind finite volume method is studied for a three-dimensional transient multiphysics transport model of a proton exchange membrane fuel cell (PEMFC), in which Navier–Stokes–Darcy coupling flow, species transports, heat transfer, electrochemical processes, and charge transports are fully considered. Multiphase mixture (M2) formulation is employed to define the involved two-phase model. Kirchhoff transformation is introduced to overcome the discontinuous and degenerate water diffusivity that is induced by the M2 model. By means of an adaptive time-stepping fourth-order multistep backward differencing formula (BDF), we design an effective temporal integration scheme to deal with the stiff phenomena arising from different time scales. In addition, all the governing equations are discretized by a combined finite element-upwind finite volume method to conquer the dominant convection effect in gas channels, while the diffusion and reaction effects are still dealt with by finite element method. Numerical simulations demonstrate that the presented techniques are effective to obtain a fast and convergent nonlinear iteration within a maximum 36 steps at each time step; in contrast to the oscillatory and nonconvergent iteration conducted by commercial CFD solvers and standard finite element/finite volume methods.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3