Equivalent Inclusion Method for the Stokes Flow of Drops Moving in a Viscous Fluid

Author:

Yin H. M.1,Lee P.-H.1,Liu Y. J.1

Affiliation:

1. Department of Civil Engineering and Engineering Mechanics, Columbia University, 610 Seeley W. Mudd Building, 500 West 120th Street, New York, NY 10027

Abstract

The equivalent inclusion method is presented to derive the Stokes flow of multiple drops moving in a viscous fluid at a small Reynolds number. The drops are replaced by inclusions with the same viscosity as the fluid, but an eigenstrain rate field that is a fictitious nonmechanical strain rate field is introduced to represent the viscosity mismatch between each drop and the matrix fluid. The velocity and pressure fields can be solved by considering the body force and eigenstrain rate on the inclusions with the Green's function technique. When one spherical drop is considered, the solution recovers the closed-form classic solution. This method is versatile and can be used in the simulation of a many-body system with different drop size, elongation ratio, and viscosity. Numerical examples demonstrate the capability and accuracy of the proposed formulation and illustrate particles' rotation and motion caused by particle interactions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of the equivalent inclusion method for the numerical homogenization of fibrous composites;Journal of Computational Physics;2023-03

2. Viscous Inclusions in Anisotropic Materials;Continuum Micromechanics;2023

3. Design, development, and applications of BIPVT systems;Building Integrated Photovoltaic Thermal Systems;2022

4. The iBEM for multiphysical problems;The Inclusion-Based Boundary Element Method (iBEM);2022

5. The iBEM for the Stokes flows;The Inclusion-Based Boundary Element Method (iBEM);2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3