Transient Analysis of a Flexible Pin-on-Disk System and Its Application to the Research Into Time-Varying Squeal

Author:

Zhang Lijun1,Wu Jun2,Meng Dejian2

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China e-mail:

2. School of Automotive Studies, Tongji University, Shanghai 201804, China

Abstract

In this paper, a flexible pin-on-disk system is used to simulate how squeal noise can be generated in frictional contact. As the research object, the modeling process and transient simulation method of the flexible pin-on-disk system are introduced. By means of numerical simulation, the time-varying frictional squeal reappears by introducing periodic frictional coefficient generated from rotation. Afterward, the features of time-varying squeal are studied including time-domain features, frequency-domain features, transient deformation features of the disk and the pin on the occurrence of squeal, as well as energy features. Finally, the conception and mathematical expressions of modal contribution factor are defined, and the transient modal contribution factor features of every mode are studied to make clear the function of every mode. The relationship between mode contribution factors and the vibration is revealed. It reveals that modal contribution factors between squeal and not are quite different from each other. On no occurrence of squeal, the modal contribution factors of sine and cosine modes of the disk fluctuate in the way similar to harmonic wave, and the phase difference between the contribution factors of sine and cosine mode with the same nodal circle and the same nodal diameter is 90 deg. During squeal, the coupling mode may play the most important role but not all the time. At any time, the low-frequency modes play the leading role.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3