Output-Only Damage Identification Using Enhanced Structural Characteristic Deflection Shapes and Adaptive Gapped Smoothing Method

Author:

Cao Shancheng1,Ouyang Huajiang1

Affiliation:

1. Centre for Engineering Dynamics, School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK e-mail:

Abstract

Structural characteristic deflection shapes (CDSs) such as mode shapes which contain spatial knowledge of structures are highly sensitive for damage detection and localization. Nevertheless, CDSs are vulnerable to measurement noise, which degrades the accuracy of damage identification. In order to enhance CDS-based damage identification, contributions are made in three aspects. First, a robust CDS estimation approach is proposed based on common principal component analysis, which estimates the CDSs as the common diagonalizer of a set of covariance matrices by joint approximation diagonalization (JAD). Second, an adaptive gapped smoothing method (GSM) is proposed and validated to be more accurate than the traditional GSM. Third, a new damage identification index capable of localizing damage and indicating relative damage severity is defined without requiring information of healthy structures. Finally, numerical and experimental examples of beams and a frame with cracks are studied to demonstrate the advantages of the proposed damage identification method in terms of noise robustness and accuracy.

Publisher

ASME International

Subject

General Engineering

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3