Comparison of Local and Averaged Air-Side Heat Transfer Coefficients on Fin-and-Tube Heat Exchangers Obtained With Experimental and Numerical Methods

Author:

Che Min1,Elbel Stefan23

Affiliation:

1. Air Conditioning and Refrigeration Center, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801

2. Air Conditioning and Refrigeration Center, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801;

3. Creative Thermal Solutions, Inc., 2209 North Willow Road, Urbana, IL 61802

Abstract

Abstract Numerical methods are often used to obtain two-dimensional air-side heat transfer coefficients (HTCs) on heat exchanger (HX) fin surfaces. The model's accuracy is usually verified through averaged HTCs by comparing with published experimental results. However, substantial disagreement is not uncommon and can hardly be explained by averaged HTCs. This study focuses on comparing experimental, local air-side HTCs to numerical ansys fluent results. A mass transfer experimental method was employed to obtain HTC distributions on the fin-and-tube HX fin surfaces. Therefore, disagreements between the experimental and numerical results can be explained in detail. There are several significant findings: inaccurate predictions of local HTCs are observed even though the averaged HTCs from the numerical method may agree with the averaged experimental results under some conditions. The models fail to capture horseshoe vortices, underestimate the HTCs in the wake region of the tubes, and overpredict row-by-row HTC degradation. Moreover, the accuracy of the numerical model decreases when the complexity of geometry increases. For the flat plate, numerically obtained HTCs agree with the experimental results within 10%. However, the error is more than 30% for the eight-row HX. Nonetheless, the model's accuracy becomes worse at higher airflow velocities. Oversized fin-and-tube HXs with multiple tube rows are often selected as a result of using the underpredicted averaged air-side HTCs from the numerical computational fluid dynamics (CFD) simulations. Thence, the authors have proposed a corrective method to improve the accuracy of the numerical model.

Funder

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3