A Two-Phase Cinematic PIV Method for Bubbly Flows

Author:

Oakley T. R.1,Loth E.2,Adrian R. J.3

Affiliation:

1. McDonnell Douglas Aerospace, 22098 James Road, Hangar 2133, Naval Air Warfare Center-Aircraft Division, Patuxent River, MD 20670

2. Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, IL 61801-2935

3. Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801-2935

Abstract

A cinematic particle image velocimeter (PIV) for measurement of time varying fields in two-phase flow is described. This system has the capability to track detailed characteristics of individual bubbles moving through a turbulent flow field, e.g., size, shape, velocity, and acceleration, and simultaneously to measure the instantaneous fluid velocity field on a two-dimensional plane. The system employs an argon-ion laser, a rotating polygonal mirror and a single 35 mm movie camera. Two features of this technique are the ability to capture bubble trajectories for long periods of time and the use of bubble images which appear as two fine point images for each instant, from which centroid and diameter can be deduced. The instrument is evaluated in an experiment on the dispersion of nominally 3.5 mm diameter bubbles from a point source in a two stream, turbulent, planar free-shear layer. Characteristics of the fluid field and the bubble motion are described.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3