Affiliation:
1. University of California, Irvine, Calif. 92717
2. California State University, Sacramento, Calif. 95819
Abstract
Performance characteristics (i.e., system temperatures and mass flow rates) of a thermosyphon solar domestic hot water (SDHW) system that are representative of practical system configurations and sizes are presented. Experimental weather/radiation conditions, collector inlet/outlet temperatures, collector mass flow rates, and storage tank temperature profiles are presented for the same period. These form a consistent set of performance data to which numerical predictions are compared. An indirect method using the storage tank temperatures is used to experimentally determine the thermosyphon mass flow rate. The accuracy of this indirect method is verified by comparison to measurements taken with a turbine flow meter on a pumped SDHW system. System temperatures and mass flow rates are predicted using a general purpose transient SDHW computer program, SHOW (Solar Hot Water). This program contains models for the solar collector, storage tank, and the thermosyphon mass flow rate. The storage tank is modeled as a stratified liquid tank with internode convection and conduction, stored internal energy, heat losses from the tank exterior, and some mixing at the tank inlet/outlet boundaries. Comparisons of predicted collector inlet/outlet temperatures; storage tank temperature profiles, and mass flow rates show agreement with experiments.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献