Solid/Liquid Phase Change in Presence of Natural Convection: A Thermal Energy Storage Case Study

Author:

Pinelli M.1,Piva S.1

Affiliation:

1. Dipartimento di Ingegneria—University of Ferrara Via Saragat, 1-44100 Ferrara, Italy

Abstract

Solid/liquid phase change process has received great attention for its capability to obtain high energy storage efficiency. In order to analyze these systems, undergoing a solid/liquid phase change, in many situations the heat transfer process can be considered conduction-dominated. However, in the past years, it has been shown that natural convection in the liquid phase can significantly influence the phase change process in terms of temperature distributions, interface displacement and energy storage. In this paper, a procedure to analyze systems undergoing liquid/solid phase change in presence of natural convection in the liquid phase based on the utilisation of a commercial computer code (FLUENT), has been developed. This procedure is applied to the study of a cylinder cavity heated from above and filled with a phase change material. It was found that when the coupling with the environment, even if small, is considered, natural convection in the liquid phase occurs. The numerical results are then compared with available experimental data. The analysis shows that the agreement between numerical and experimental results is significantly improved when the results are obtained considering the presence of circulation in the liquid phase instead of considering the process only conduction-dominated. Furthermore, some interesting features of the flow field are presented and discussed.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3