The Distribution of Temperatures in a Hot/Cold Die Set: The Effect of the Pressure, Temperature, and Material

Author:

Lenard J. G.1,Davies M. E.2

Affiliation:

1. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada

2. Long Manufacturing Ltd., Oakville, Ontario L6K 3E4 Canada

Abstract

Modern hot metalforming operations require a predictive-adaptive control program in which the predictive component precalculates the necessary parameters—such as temperatures and loads—and the adaptive component sets up, monitors and adjusts the forming equipment. One of the needs of a predictive model of the process is for an understanding of the boundary conditions at the surface of contact. For high temperature operations, one of these conditions is described by the heat transfer coefficient, relating the heat flux and the difference of the temperatures of the contacting surfaces, at the die-workpiece interface. The surface temperatures are, of course, dependent on the distribution of the temperatures within the body of the dies. The determination of these distributions is the topic of the present project. Thermocouples embedded in a cold/hot die set as well as thermocouples placed on the surface of contact are used to monitor the temperature fields, within the body as well as on the surfaces, for various interface pressures, initial temperatures and materials. The results indicate that direct measurements of the temperatures of the contacting surfaces is very difficult and may lead to significant errors. It is recommended that a mathematical model, which uses the measured internal temperatures as initial conditions, should be employed to calculate the contact surface temperatures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3