The Numerical and Experimental Study of a Power Plant Condenser

Author:

Zhang C.1,Sousa A. C. M.2,Venart J. E. S.2

Affiliation:

1. Department of Mechanical Engineering, University of Windsor, Windsor, Ontario, Canada N9B 3P4

2. Department of Mechanical Engineering, University of New Brunswick, Fredericton, N.B., Canada E3B 5A3

Abstract

A numerical and experimental study to evaluate the performance of a power plant condenser has been carried out. Numerically, physically relevant effects are taken into consideration through a quasi-three-dimensional approach. The equations governing the conservation of mass, momentum, and air mass fraction are solved in primitive variable form using a semi-implicit consistent control-volume formulation in which a segregated pressure correction linked algorithm is employed. The modeling of the condenser geometry, including tube bundle and baffle plates, is carried out based on a porous medium concept using applicable flow, heat, and mass transfer resistances. The measurement program included determinations of the steam pressures on the tube bundle perimeter (96 points), steam temperatures (96 locations), inlet tube sheet water pressure distributions (26 measurements), outlet tube sheet flows and temperatures (26 points), hot well flow, and enthalpy in addition to all makeup and extraction flow rates as a function of load. The measurement program and its implementation are briefly described. One data set is compared with the numerical predictions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3