Affiliation:
1. Department of Mechanical and Aerospace Engineering and Engineering Mechanics, University of Missouri—Rolla, Rolla, MO 65401
Abstract
Measurements of velocity and temperature distributions in buoyancy-assisting laminar mixed convection boundary-layer flow over a vertical, two-dimensional backward-facing step are reported. The leading surface upstream of the step and the step itself were adiabatic, and the surface downstream of the step was heated and maintained at a uniform temperature. A laser-Doppler velocimeter and a cold-wire anemometer were utilized to measure simultaneously the velocity and the temperature distributions in the recirculation and the reattached region downstream of the step. Flow visualization was used to study the flow and to measure the reattachment length for different free-stream velocities (0.37 m/s ≤ u0 ≤ 0.72 m/s), wall temperature differences (10°C ≤ ΔT ≤ 30°C), and step heights (0.38 cm ≤ s ≤ 1 cm). Results show that for a given step height the reattachment length decreases as the buoyancy force parameter, Grs/Res2, increases. The Nusselt number at the heated wall downstream of the step increases and the location of its maximum value moves closer to the step as the buoyancy force parameter increases. For the present experimental range, it is found that the location of the maximum Nusselt number occurs downstream of the reattachment point and the distance between the reattachment point and the location of the maximum Nusselt number increases as the buoyancy force parameter increases. Predicted behavior agrees favorably with the measured results.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献