A Multi-Objective Mechanism Optimization for Controlling an Aircraft Using a Bio-Inspired Rotating Empennage

Author:

Myszka David H.1,Joo James J.2,Murray Andrew P.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH 45469

2. Structures Technology Branch, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

Abstract

Abstract This paper presents a mechanism design optimization for actuating the horizontal stabilizers of an aircraft using a rotating empennage without a vertical stabilizer. Birds do not have vertical stabilizers and rotate their tail feathers to control agile maneuvers. A rotating empennage concept will mimic this motion and enable the bio-inspired flight of a fixed wing aircraft. To maintain control, the bio-inspired rotating empennage will incorporate three degrees of freedom: independent rotation of each horizontal stabilizer and rotation of the empennage relative to the main axis of the fuselage. The primary benefits of an aircraft without a vertical stabilizer are reduced drag and weight which, in turn, results in a more efficient operation. In order to reduce inertia of the rotating empennage, the linear actuators that position the horizontal stabilizers will be placed within the fuselage. Mechanisms that couple the linear translation of the actuators with the rotation of the horizontal stabilizers ideally require a low peak force and short stroke from the actuator. With two conflicting objectives, a Pareto front optimization was conducted to determine appropriate link lengths of candidate solutions and to understand the effectiveness of alternate mechanisms. The study considers rack & pinon, scotch-yoke, slider-crank, inverted slider-crank, Watt II, and Stephenson III mechanisms.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Flight Dynamics and Control of a Vertical Tailless Aircraft;Bras;J. Aeronaut. Aerospace Eng.,2013

2. The US Air Force’s Radical Plan for a Future Fighter Could Field a Jet in 5 Years;Insinna,2019

3. Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions;Hunsaker,2017

4. Red Kites in Flight/Close Up;Plack,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3