Analysis of Laminar Falling Film Condensation Over a Vertical Plate With an Accelerating Vapor Flow

Author:

Khaled A.-R. A.1,Radhwan Abdulhaiy M.1,Al-Muaikel S. A.1

Affiliation:

1. Department of Thermal Engineering and Desalination Technology, King AbdulAziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Abstract

Laminar falling film condensations over a vertical plate with an accelerating vapor flow is analyzed in this work in the presence of condensate suction or slip effects at the plate surface. The following assumptions are made: (i) laminar condensate flow having constant properties, (ii) pure vapor with a uniform saturation temperature in the vapor region, and (iii) the shear stress at the liquid/vapor interface is negligible. The appropriate fundamental governing partial differential equations for the condensate and vapor flows (continuity, momentum, and energy equations) for the above case are identified, nondimensionalized, and transformed using nonsimilarity transformation. The transformed equations were solved using numerical, iterative, and implicit finite-difference methods. It is shown that the freestream striking angle has insignificant influence on the condensation mass and heat transfer rates, except when slip condition is present and at relatively small Grl/Re2 values. Moreover, it is shown that increasing the values of the dimensionless suction parameter (VS) results to an increase in dimensionless mass of condensate (Γ(L)/(μl Re)) and Nusselt number (Nu(L)/Re1/2). Thus, it results in an increase in condensation mass and heat transfer rates. Finally, it is found that the condensation and heat transfer rates increase as Jakob number, slip parameter, and saturation temperature increase. Finally, the results of this work not only enrich the literature of condensation but also provide additional methods for saving thermal energy.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. Die Oberflächenkondensation des Wasserdampfes;Nusselt;Z. Ver. Dtsch. Ing.

2. Heat Transfer in Condensation—Effect of Heat Capacity Condensate;Bromley;Ind. Eng. Chem.

3. Heat Transfer and Temperature Distribution in Laminar-Film Condensation;Rohsenow;Trans. ASME

4. A Boundary-Layer Treatment of Laminar-Film Condensation;Sparrow;ASME J. Heat Transfer

5. Heat Transfer Theory of Film Condensation of Saturated Vapor at Rest;Yang;Chin. J. Mech. Eng.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3