An Implicit Scheme for Cascade Flow and Heat Transfer Analysis

Author:

Xu C.1,Amano R. S.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53201

Abstract

A new efficient implicit scheme, based on the second-order time and spatial difference algorithm for solving steady flow by using time-marching Navier–Stokes equations, was developed for predicting turbine cascade flows and heat transfer. The difference scheme comprises an explicit part in the intermediate time-step and an implicit part in the local time-step. The viscous flux vectors are decomposed to simplify the flow calculation in the explicit step. The time difference terms are expressed in terms of the viscous dependent terms that appear in the diffusion terms in the form by adding eigenvalues of viscous flux matrices into the time derivation term. In the presently proposed scheme, the two-sweep procedure is used in the implicit step instead of employing a traditional matrix operation to save the computational time. This method has been used to calculate the flow around C3X and VKI cascades. The computed results were compared with experimental data as well as with other published computations. The comparisons for both surface pressure and heat transfer coefficient showed good agreement with the experiments. [S0889-504X(00)01702-5]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Development of Turbomachine Blade Aerodynamic Design System;International Journal for Computational Methods in Engineering Science and Mechanics;2009-04-22

2. Computational Analysis of Swept Compressor Rotor Blades;International Journal for Computational Methods in Engineering Science and Mechanics;2008-09-30

3. Numerical Prediction on Loss and Secondary Flow Effects around a Gas Turbine Blade;5th International Energy Conversion Engineering Conference and Exhibit (IECEC);2007-06-18

4. Design Experience and Considerations for Centrifugal Compressor Development;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2007-02-01

5. Blade Sweep Effects of Turbomachinery;43rd AIAA Aerospace Sciences Meeting and Exhibit;2005-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3