A Stochastic Approach to Thermal Modeling Applied to Electro-Discharge Machining

Author:

Pandit S. M.1,Rajurkar K. P.1

Affiliation:

1. Mechanical Engineering-Engineering Mechanics Department, Michigan Technological University, Houghton, Mich. 49931

Abstract

The usual method of making some simplifying assumptions and formulating thermal models that yield results confirmed by experiments does not work in many cases where the problem is complex and random. Electro-Discharge Machining (EDM) is such a process that is not only complicated and random but also physically little understood. The paper illustrates thermal modeling of this process with the help of a recently developed stochastic methodology called Data Dependent Systems (DDS). An equation to the melting iosthermal curve is defined from the DDS (stochastic empirical) model obtained from readily measurable surface profiles of actual machined surfaces created by the random superposition of electrical discharges. This equation of the melting isothermal curve is then combined with the heat conduction equation, under rather realistic and intuitively obvious assumptions, to develop a transient temperature distribution. The form of this (hybrid) thermal model is mathematically much simpler and yet its predictions are much closer to the experimental results, compared to the complicated models proposed in the literature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3