Bond Graph Modeling of an Internally Damped Nonideal Flexible Spinning Shaft

Author:

Samantaray A. K.1,Dasgupta S. S.1,Bhattacharyya R.1

Affiliation:

1. Department of Mechanical Engineering, Systems, Dynamics, and Controls Laboratory, Indian Institute of Technology, Kharagpur 721302, India

Abstract

The rotating internal damping or nonconservative circulatory force in a rotor shaft system causes instability beyond a certain threshold rotor spinning speed. However, if the source loading of the drive is considered, then the rotor spin is entrained at the stability threshold and a stable whirl orbit is observed about the unstable equilibrium. As we move toward the use of more and more lightweight rotor dynamic components such as the shaft and the motor, overlooking this frequency entrainment phenomenon while sizing the actuator in the design stage may lead to undesirable performance. This applies to many emerging areas of strategic importance such as in vivo medical robots where flexible probes are used and space robotics applications involving rotating tools. We analyze this spin entrainment phenomenon in a distributed parameter model of a spinning shaft, which is driven by a nonideal dc motor. A drive whose dynamics is influenced by the dynamics of the driven system is called a nonideal source and the whole system is referred to as a nonideal system. In particular, we show the advantages of representing such nonideal drive-system interactions in a modular manner through bond graph modeling as compared to standard equation models where the energetic couplings between dynamic variables are not explicitly shown. The developed modular bond graph model can be extended to include rotor disks and bearings placed at different locations on the shaft. Moreover, the power conserving property of the junction structure of the bond graph model is exploited to derive the source loading expressions, which are then used to analytically derive the steady-state spinning frequency and whirl orbit amplitude as functions of the drive and the rotor system parameters. We show that the higher transverse modes may become unstable before the lower ones under certain parametric conditions. The shaft spinning speed is entrained at the lowest stability threshold among all transverse modes. The bond graph model is used for numerical simulation of the system to validate the steady-state results obtained from the theoretical study.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference59 articles.

1. Beiträge Zum Dynamischen Ausbau Der Festigkeitslehe;Sommerfeld;Phys. Z.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3