Design, Synthesis, and Experiment of Foot-Driven Lower Limb Rehabilitation Mechanisms

Author:

Yu Chennan1,Ye Jun2,Jia Jiangming34,Zhao Xiong34,Chen Zhiwei1,Chen Jianneng34

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China

2. Faculty of Mechanical Engineering, Zhejiang Industry Polytechnic College, No. 151 Qutun Road, Yuecheng District, Shaoxing 312000, Zhejiang, China

3. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China;

4. Key Laboratory of Transplanting Equipment and Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, China

Abstract

Abstract A foot-driven rehabilitation mechanism is suitable for home healthcare due to its advantages of simplicity, effectiveness, small size, and low price. However, most of the existing studies on lower limb rehabilitation movement only consider the trajectory of the ankle joint and ignore the influence of its posture angle, which makes it difficult to ensure the rotation requirements of the ankle joint and achieve a better rehabilitation effect. Aiming at the shortcomings of the current research, this article proposes a new single degree-of-freedom (DOF) configuration that uses a noncircular gear train to constrain the three revolute joints (3R) open-chain linkage and expounds its dimensional synthesis method. Then, a parameter optimization model of the mechanism is established, and the genetic algorithm is used to optimize the mechanism parameters. According to the eight groups of key poses and position points of the ankle joint and the toe, the different configurations of the rehabilitation mechanism are synthesized and compared, and it is concluded that the newly proposed 3R open-chain noncircular gear-linkage mechanism exhibits better performance. Finally, combined with the requirements of rehabilitation training, a lower limb rehabilitation training device is designed based on this new configuration, and a prototype is developed and tested. The test results show that the device can meet the requirements of the key position points and posture angles of the ankle joint and the toe and verify the correctness of the proposed dimensional synthesis and optimization methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3