Multiple Frequency Ultrasonic Detection of Subsurface Near-Race Inclusions for Improved Fatigue Life Performance

Author:

Hu Ping1,Turner Joseph A.1,Tarawneh Constantine2,Wilson Brent3,Fuller Allen J.4

Affiliation:

1. University of Nebraska-Lincoln, Lincoln, NE

2. University of Texas-Pan American, Edinburg, TX

3. Amsted Rail, Granite City, IL

4. Amsted Rail, Petersburg, VA

Abstract

The importance of steel cleanliness for the performance of tapered roller bearings has been clearly established and has led to on-going improvements in steel production methods. The presence of non-metallic impurities within the steel can result in hard/brittle inclusions that may serve as initiation sites for damage due to sub-surface rolling contact fatigue (RCF) if the inclusions lie within the near-race of the bearing components due to the high mechanical stress present. Current inspection standards define steel cleanliness with respect to bulk inclusion morphology, which limits inspection to a small area that may or may not be representative of the entire steel heat. In this presentation, ultrasonic surface wave methods are described for detecting subsurface inclusions directly on finished bearing inner and outer rings. We expand on our previous work to exploit the different inspection depths that can be achieved with different measurement frequencies. The impact of the different inspection depths is quantified through simulated service life testing with heavy axle loading conditions. For this study, bearing components were first subjected to ultrasonic surface wave testing at three different frequencies to identify near-race inclusions. The simulated service life testing was then used to assess the onset and propagation of RCF failure. RCF spall initiations correlated highly with the positions identified by the ultrasonic inspections suggesting that this approach has a predictive potential. However, additional research is needed to establish the specific criteria needed for such predictions with respect to the inclusion location along the race, the depth from the race surface, the inclusion morphology and the inclusion mechanical properties. This work is anticipated to improve the understanding of RCF damage initiation which will lead a higher level of safety for railroad operations.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3