Evaluating the End of Maintenance Dates for Electronic Assemblies Composed of Obsolete Parts

Author:

Konoza Anthony1,Sandborn Peter1

Affiliation:

1. CALCE Electronic Products and Systems Center, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

Abstract

Long-term support of legacy electronic systems is challenging due to mismatches between the system support life and the procurement lives of the systems’ constituent components. Legacy electronic systems that are used in safety, mission, and infrastructure critical applications that must be supported for 20+ yr are threatened with diminishing manufacturing sources and material shortages (DMSMS)-type obsolescence, and their effective system support lives may be governed by existing nonreplenishable inventories of spare parts. This paper describes the development of the end of maintenance (EOM) model, which uses a stochastic discrete-event simulation that follows the life history of the population of parts in a system using time-to-failure distributions and other forecasted demands. The model determines the support life of the system based on existing inventories of spare parts and cards, and optionally harvesting parts from existing cards to extend the support life of the system. The model includes: part inventory degradation, periodic inventory inspections, and design refresh planning for selected cards. A case study using a real legacy system comprised of 117,000 instances of 70 unique cards and 4.5 × 106 unique parts is presented. The case study was used to evaluate the support life of a system with various future failure assumptions, including with and without the use of part harvesting. The case study also includes sensitivity analyses for selected design refreshes to maximize potential system life-cycle capabilities, and optional design refresh planning required to sustain the system to a specific date.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference24 articles.

1. The Problem With Aviation COTS;IEEE Aerospace Electron. Syst. Mag.,2001

2. The Cost of COTS;IEEE Aerospace Electron. Syst. Mag.,2001

3. Trapped on Technology’s Trailing Edge;IEEE Spectrum,2008

4. Designing Engineering Systems for Sustainment,2008

5. Dealing With Obsolete Parts;IEEE Des. Test Comput.,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3