Analysis and Testing of a Portable Thermal Battery

Author:

Taylor Robert A.12,Chung Chia-Yang3,Morrison Karl3,Hawkes Evatt R.12

Affiliation:

1. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia;

2. School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia

3. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Portable energy storage will be a key challenge if electric vehicles (EVs) become a large part of our future transportation system. A big barrier to market uptake for EVs is driving range. Range can be further limited if heating and air conditioning systems are powered by the EV's batteries. The use of electricity for HVAC can be minimized if a thermal storage system, a “thermal battery,” can be substituted as the energy source to provide sufficient cabin heating and cooling. The aim of this project was to model, design, and fabricate a low-cost, modular thermal battery for EVs. The constructed thermal battery employs a phase change material erythritol (a sugar alcohol commonly used as artificial sweetener) as the storage medium sealed in an insulated, stainless steel container. At a total prototype cost of ∼$311/kW-h, the system is roughly half the price of lithium ion batteries. Heat exchange to the thermal battery is accomplished via water (or low viscosity engine oil), which is pumped through a helical winding of copper tubing. A computational fluid dynamics (CFD) model was used to determine the geometry (winding radius and number of coils) and flow conditions necessary to create adequate heat transfer. Testing of the fabricated design indicates that the prototype thermal battery module can store enough heat and discharge it fast enough to meet the demand of cruising passenger vehicle for up to 1 h on a cold day. The battery is capable of storing nearly 100 W-h/kg and can provide a specific power density of 30 W/kg. The storage density is competitive with lithium ion batteries, but work is needed to improve the power density.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020,2013

2. Thermal Management System for Electric Vehicles;SAE Int. J. Mater. Manuf.,2011

3. Air-Conditioning System For Electric Vehicles,2010

4. Green Car Congress: The Battery Pack for Mitsubishis i-MiEV;BioAge Group,2008

5. Costs of Lithium-Ion Batteries for Vehicles,2000

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3