Multifunctional Three-Dimensional Curvilinear Self-Folding of Glassy Polymers

Author:

Lee Jae Gyeong1,Won Sukyoung1,Park Jeong Eun1,Wie Jeong Jae2

Affiliation:

1. Advanced Materials Research Laboratory, Department of Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea

2. Advanced Materials Research Laboratory, Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea

Abstract

Abstract The selective light absorption of prestretched thermoplastic polymeric films enables wireless photothermal shape morphing from two-dimensional Euclidean geometry of films to three-dimensional (3D) curvilinear architectures. For a facile origami-inspired programming of 3D folding, black inks are printed on glassy polymers that are used as hinges to generate light-absorption patterns. However, the deformation of unpatterned areas and/or stress convolution of patterned areas hinder the creation of accurate curvilinear structures. In addition, black inks remain in the film, prohibiting the construction of transparent 3D architectures. In this study, we demonstrate the facile preparation of transparent 3D curvilinear structures with the selection of the curvature sign and chirality via the selective light absorption of detachable tapes. The sequential removal of adhesive patterns allowed sequential folding and the control of strain responsivity in a single transparent architecture. The introduction of multiple heterogeneous nonresponsive materials increased the complexity of strain engineering and functionality. External stimuli responsive kirigami-based bridge triggered the multimaterial frame to build the Gaussian curvature. Conductive material casted on the film in a pattern retained the conductivity, despite local deformation. This type of tape patterning system, adopting various materials, can achieve multifunction including transparency and conductivity.

Funder

Ministry of Trade, Industry and Energy

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3