Wind Turbine Multivariate Power Modeling Techniques for Control and Monitoring Purposes

Author:

Astolfi Davide1,Castellani Francesco1,Natili Francesco1

Affiliation:

1. Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy

Abstract

Abstract Wind turbine performance monitoring is a complex task because the power has a multivariate dependence on ambient conditions and working parameters. Furthermore, wind turbine nacelle anemometers are placed behind the rotor span and the control system estimates the upwind flow through a nacelle transfer function: this introduces a data quality issue. This study is devoted to the analysis of data-driven techniques for wind turbine performance control and monitoring: operation data of six 850 kW wind turbines sited in Italy have been employed. The objective of this study is an assessment of several easily implementable techniques and input variables selections for data-driven models whose target is the power of a wind turbine. Three model types are selected: one is linear (Principal Component Regression) and two are nonlinear (Support Vector Regression with Gaussian Kernel and Feedforward Artificial Neural Network). The models' validation provides meaningful indications: the linear model in general has lower performance because it cannot reproduce properly the nonlinear pitch behavior when approaching rated power. Therefore, it is concluded that a nonlinear model should be employed and the achieved mean absolute error is of the order of 1.3% of the rated power. Furthermore, the errors are kept at the order of 2% of the rated power for the models whose input is the rotor speed instead that wind speed: this observation supports that, in case it is needed because of nacelle anemometer biases, the power monitoring can be acceptably implemented using the rotor speed.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3