Static and Dynamic Analysis of Carbon Nanotube-Based Switches

Author:

Dequesnes Marc1,Tang Zhi1,Aluru N. R.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

In this paper, we report on molecular dynamics (MD), continuum (based on linear and nonlinear beam theories) and combined molecular dynamics/continuum simulation of carbon nanotube based nanoelectromechanical switches. As a prototype device, we study the pull-in voltage characteristics of a nanoelectromechanical switch made of a suspended single wall nanotube over a ground plane. The various simulations (MD, continuum and combined MD/continuum) have been performed accounting for the electrostatic and van der Waals forces between the nanotube and the ground plane. The results from the nonlinear continuum theory compared well with the results from MD, except, for cases, where nanotube buckling was observed. When buckling occurs, the electromechanical behavior of the switch is simulated by employing a combined MD/continuum approach. The combined MD/continuum approach is computationally more efficient compared to the MD simulation of the entire device. Static and dynamic pull-in, pull-in time and fundamental frequency analysis is presented for fixed-fixed and cantilever carbon nanotube switches.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3