The Experimental Investigations of Centripetal Air Bleed With Tubed Vortex Reducer for Secondary Air System in Gas Turbine

Author:

Chen Xiao1,Feng Ye1,Wu Lijun1

Affiliation:

1. AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China

Abstract

In a modern gas turbine, the air bled through High Pressure Compressor (HPC) rotor drums from the main flow is transported radially inwards and then transferred to cool the High Pressure Turbine (HPT). The centripetal air flow creates a strong vortex, which results in huge pressure losses. This not only restricts the mass flow rate, but also reduces the cooling air pressure for down-stream hot components. Adding vortex reducer tubes to the centripetal air bleed can reduce the pressure loss and ensure the pressure and mass flow rate of the supply air. Design optimization of the tubed vortex reducer is essential in minimizing the pressure losses. This paper describes experimental investigations of different configurations of tubed vortex reducers at different rotational speeds and mass flow rates. Particular attention is paid to the shape of the drum hole, the length of the tubed vortex reducers at the same installation location, and the angles of the nozzle guide vane outlets. The core section of test rig is comprised of two steel disks, one drum rotor and stationary cases with nozzle guide vanes. It operates at representative engine parameters, such as the turbulent flow parameter, λT(0.2–1.8) and the Rossby number Ro(0.05–0.08). Three conclusions can be drawn based on the experimental results. 1) The shape of the drum hole is a key factor of the bleed system pressure loss. An oval hole configuration has less flow resistance and results in lower pressure losses compared with a circular hole design. 2) The tests prove that tubed vortex reducers are instrumental in minimizing centripetal air flow. These components effectively restrain the free vortex development and decrease the pressure losses in the cavity. 3) Basically, the flow field consists of a free vortex and a forced vortex. The length of the tube influences the flow field and the pressure losses at the inlet and outlet of the tubed vortex reducer. However, the tube length is less important when compared with the shape of drum hole.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3