Film Cooling With Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique

Author:

Chen Andrew F.1,Li Shiou-Jiuan1,Han Je-Chin1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

A systematic study was performed to investigate the combined effects of hole geometry, blowing ratio, density ratio and free-stream turbulence intensity on flat plate film cooling with forward and backward injection. Detailed film cooling effectiveness distributions were obtained using the steady state pressure sensitive paint (PSP) technique. Four common film-hole geometries with forward injection were used in this study: simple angled cylindrical holes and fan-shaped holes, and compound angled (β = 45°) cylindrical holes and fan-shaped holes. Additional four film-hole geometries with backward injection were tested by reversing the injection direction from forward to backward to the mainstream. There are seven holes in a row on each plate and each hole is 4 mm in diameter. The hole length to diameter ratio is 7.5. The blowing ratio effect was studied at 10 different blowing ratios ranging from M = 0.3 to M = 2.0. The coolant to main stream density ratio (DR) effect was studied by using foreign gases with DR = 1 (N2), 1.5 (CO2), and 2 (15% SF6 + 85% Ar). The free stream turbulence intensity effect was tested at 0.5% and 6%. The results show higher density coolant provides higher effectiveness than lower density coolant, fan-shaped holes perform better than cylindrical holes, and compound angled holes are better than simple angled holes. In general, the results show the film cooling effectiveness with backward injection is greatly reduced for shaped holes as compared with the forward injection. However, significant improvements can be seen in both simple angled and compound angled cylindrical holes at higher blowing ratios and density ratio (DR = 2). Comparison was made between experimental data and empirical correlations for simple angled fan-shaped holes at engine representative density ratios. An improved correlation which covers a wider range of density ratios (DR = 1.0 to DR = 2.0) is proposed.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3