Numerical Analysis and Validation of the Rotor Blade Vibration Response Induced by High Pressure Compressor Deep Surge

Author:

Giersch Thomas1,Figaschewsky Felix1,Hönisch Peter1,Kühhorn Arnold1,Schrape Sven2

Affiliation:

1. Brandenburg University of Technology Cottbus, Cottbus, Germany

2. Rolls-Royce Deutschland Ltd & Co KG, Blankenfelde-Mahlow, Germany

Abstract

The following paper presents a numerical analysis of a deep surge cycle of a 4.5 stage research compressor. The resulting unsteady loads are used to determine the response of two particular rotor blade rows that are then compared to strain gauge data from measurements. Within a deep surge cycle the compressor experiences a rapid change of the flow field from forward to reversed flow. This rapid breakdown is linked to a new mean blade load. Hence, the rapid change in blade loads are able to excite fundamental blade modes similar to an impulse load. The resulting vibration magnitudes might reach critical levels. This paper demonstrates two different approaches to evaluate the unsteady flow during a surge cycle. The first uses a three dimensional, time accurate finite volume solver for viscid compressible flows to calculate the transient surge cycle of the compressor. The compressor itself is represented by a multi-blade-row sector model. The second approach makes use of the same solver and compressor domain to determine steady state characteristics of the HPC in forward, stalled and reversed flow. Based on these characteristics an one dimensional finite volume solver for inviscid compressible flows was developed to determine the transient compressor behavior. The one dimensional solver represents the compressor by source terms that are linked to the previously determined steady state characteristics.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3