Exploiting Waste Heat in Small and Medium-Sized Combined Heat and Power Plants Using Steam Injection

Author:

Arnold Stephan1,Schatz Markus1

Affiliation:

1. University of Stuttgart, Stuttgart, Germany

Abstract

Combined heat and power generation (CHP) is a way of providing both electric power and thermal heat for industrial and domestic facilities at high fuel efficiencies. Often small and medium sized gas powered internal combustion (IC) engines, rated at electric power outputs of 50–600 kW, are used for such applications. During the time when the available thermal heat is used, the fuel efficiency of such CHP plants is very high, but it drops to the efficiencies of simple power generation when there is no heat demand, e.g. during summer. In these cases, the exhaust heat is blown off, especially as CHP units are mainly heat-lead, i.e. designed to cover the heat demand rather than the demand for electrical power. Moreover, as the cooling water heat rejection is also more difficult at elevated ambient temperatures, these units are then operated at part load or even switched off, hence having a lower degree of capacity utilization. The approach of the work presented here is to replace the turbocharger system commonly used for IC engines and to use an electric driven compression device instead, while the turbine serves to generate additional electric power from the exhaust gas. Furthermore, for periods with low thermal heat demand, steam is generated from the turbine exhaust heat. The steam is injected in front of the turbine in order to increase the turbine work output further. Thus, at least part of the exhaust heat available is used and the power output as well as the electric efficiency is increased. In the present work, two configurations of the described setup using a medium sized gas powered IC engine CHP unit are modeled in order to assess the impact on plant performance and the characteristics of such a facility. In both cases the engine cooling circuit is integrated. Depending on the configuration used, the plant power output increases by up to 7% only because of the power turbine. Additional steam injection to use the waste heat increases the power output further. The relative electric efficiency increase with steam injection is in the range of 3–5%. Apart from the higher output of electric power, this approach allows longer operating hours to be achieved, as the exhaust heat available is utilized and the heat load for the cooling water circuit is reduced.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3