Experimental Investigation on Lean Blow Out of a Piloted Aero-Engine Burner

Author:

Bhagwan R.1,Wollgarten J. C.1,Habisreuther P.1,Zarzalis N.1

Affiliation:

1. Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

One of the preferred ways to reduce NOX formation in an aero-engine is to operate lean throughout the whole operational range; however the lean combustion suffers from poor stability. To avoid the problem associated with stability, often a rich pilot flame is used along with a main flame to act as a source of heat and radicals to the main flame. The focus of the paper is to discuss the influence of the liquid fuel spray characteristics and effect of flow parameters on the lean blow out (LBO) limits of a piloted burner. In order to understand the observed remarkable LBO limits of the pilot flame with Jet A-1 (LBO = 145 kg-air to kg-fuel at 0.1 MPa of combustor pressure), velocity field measurements by laser Doppler Anemometry (LDA) technique have been performed. Furthermore, the flame structure has been analyzed with OH* chemiluminescence imaging. Experimental results show that the LBO limits of the burner running with liquid fuel further improves with an increase in combustor pressure. Such improvement in LBO limits is attributed to the change in the liquid fuel distribution caused by the change in the combustor pressure. For gaseous fuel measurements, results indicate that the equivalence ratio and the momentum ratio of the pilot jet to the co-annular flow are the dominating parameters that control the mixing process in the combustor and the ensuing effect on the flame structure and location of flame stabilization is substantial. The flame stabilizes either along the centreline or along the shear layer between two jets. Such information is useful in designing a lean partially premixed combustion system where a pilot flame is required to stabilize a main lean flame.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3