Plant Performance Monitoring and Diagnostics: Remote, Real-Time and Automation

Author:

Jiang Xiaomo1,Foster Craig1

Affiliation:

1. General Electric Company, Atlanta, GA

Abstract

Combined cycle gas turbine plants are built and operated with higher availability, reliability, and performance than simple cycle in order to help provide the customer with capabilities to generate operating revenues and reduce fuel costs while enhancing dispatch competitiveness. The availability of a power plant can be improved by increasing the reliability of individual assets through maintenance enhancement and performance degradation recovery through remote efficiency monitoring to provide timely corrective recommendations. This paper presents a comprehensive system and methodology to pursue this purpose by using instrumented data to automate performance modeling for real-time monitoring and anomaly detection of combined cycle gas turbine power plants. Through thermodynamic performance modeling of main assets in a power plant such as gas turbines, steam turbines, heat recovery steam generators, condensers and other auxiliaries, the system provides an intelligent platform and methodology to drive customer-specific, asset-driven performance improvements, mitigate outage risks, rationalize operational patterns, and enhance maintenance schedules and service offerings at total plant level via taking appropriate proactive actions. In addition, the paper presents the components in the automated remote monitoring system, including data instrumentation, performance modeling methodology, operational anomaly detection, and component-based degradation assessment. As demonstrated in two examples, this remote performance monitoring of a combined cycle power plant aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive values for customers including shortening outage downtime, lowering operating fuel cost and increasing customer power sales and life cycle value of the power plant.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3