A New Experimental Facility to Investigate Combustor-Turbine Interactions in Gas Turbines With Multiple Can Combustors

Author:

Luque S.1,Kanjirakkad V.1,Aslanidou I.1,Lubbock R.1,Rosic B.1,Uchida S.2

Affiliation:

1. University of Oxford, Oxford, UK

2. Mitsubishi Heavy Industries, Takasago, Hyogo, Japan

Abstract

This paper describes a new modular experimental facility that was purpose-built to investigate flow interactions between the combustor and first stage nozzle guide vanes of heavy duty power generation gas turbines with multiple can combustors. The first stage turbine nozzle guide vane is subjected to the highest thermal loads of all turbine components and therefore consumes a proportionally large amount of cooling air that contributes detrimentally to the stage and cycle efficiency. It has become necessary to devise novel cooling concepts that can substantially reduce the coolant air requirement but still allow the turbine to maintain its aerothermal performance. The present work aims to aid this objective by the design and commissioning of a high-speed linear cascade which consists of two can combustor transition ducts and four first stage nozzle guide vanes. This is a modular non-reactive air test platform with engine realistic geometries (gas path and near gas path), cooling system, and boundary conditions (inlet swirl, turbulence level and boundary layer). The paper presents the various design aspects of the high pressure blow down type facility, and the initial results from a wide range of aerodynamic and heat transfer measurements under highly engine realistic conditions.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3