Automatic Three-Dimensional Optimisation of a Modern Tandem Compressor Vane

Author:

Schlaps R. C.1,Shahpar S.2,Gümmer V.3

Affiliation:

1. University of Leeds, Leeds, UK

2. Rolls-Royce plc., Derby, UK

3. Rolls-Royce Deutschland, Blankenfelde-Mahlow, Germany

Abstract

In order to increase the performance of a modern gas turbine, compressors are required to provide higher pressure ratio and avoid incurring higher losses. The tandem aerofoil has the potential to achieve a higher blade loading in combination with lower losses compared to single vanes. The main reason for this is due to the fact that a new boundary layer is generated on the second blade surface and the turning can be achieved with smaller separation occurring. The lift split between the two vanes with respect to the overall turning is an important design choice. In this paper an automated three-dimensional optimisation of a highly loaded compressor stator is presented. For optimisation a novel methodology based on the Multipoint Approximation Method (MAM) is used. MAM makes use of an automatic design of experiments, response surface modelling and a trust region to represent the design space. The CFD solutions are obtained with the high-fidelity 3D Navier-Stokes solver HYDRA. In order to increase the stage performance the 3D shape of the tandem vane is modified changing both the front and rear aerofoils. Moreover the relative location of the two aerofoils is controlled modifying the axial and tangential relative positions. It is shown that the novel optimisation methodology is able to cope with a large number of design parameters and produce designs which performs better than its single vane counterpart in terms of efficiency and numerical stall margin. One of the key challenges in producing an automatic optimisation process has been the automatic generation of high-fidelity computational meshes. The multi block-structured, high-fidelity meshing tool PADRAM is enhanced to cope with the tandem blade topologies. The wakes of each aerofoil is properly resolved and the interaction and the mixing of the front aerofoil wake and the second tandem vane are adequately resolved.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3